
Snippet Search:

a Single Phrase Approach to Text Access

Jan Pedersen and Doug Cutting (Xerox PARC)

John Tukey (Xerox PARC and Princeton University)

Information Access

Due to the ever increasing a�ordability and accessibility of very large, online, text col-

lections, processing natural language texts for search and retrieval has recently been the

focus of heightened attention, although researchers have been active in the �eld since the

early sixties. Numerous approaches have been attempted, but they all su�er from the ob-

vious di�culty that search and retrieval is quintessentially a cognitive task; the degree of

automatic language understanding required for a completely automatic solution is clearly

beyond the bounds of current technology. Instead, heuristic search techniques attempt to

match an admittedly incomplete query description with an admittedly incomplete set of fea-

tures extracted from the texts of interest. The challenge therefore lies in the development

of procedures that more e�ectively bridge the gap between an individual's partially stated

desires and a universe of text, which typically appears, computationally, as a sequence of

uninterpreted words.

Many of these procedures are statistical in nature; they take advantage of repeated oc-

currences of the same word to infer relations between documents, and between queries and

documents.

1

For example, similarity search induces a \relevance" ordering on the text

collection by scoring each document with a normalized sum of importance weights assigned

to each word in common between it and the query, where the importance weights depend

upon document and collection, or corpus, frequencies [28]. A more formal approach scores

documents with their estimated probability of relevance to the query by adopting a text

model which assumes word occurrences are sequentially uncorrelated and training on a set of

known relevant documents [3, 30]. In contrast, polysemy (one word having multiple senses)

and word correlation is directly addressed by Latent Semantic Indexing, which attempts to

exact characteristic linear combinations through a singular value decomposition of a word

co-occurrence matrix [12]. The availability of interdocument similarity measures suggests

clustering, which has been pursued both as an accelerator for conventional search and as

a query broadening tool [31]. Finally, linear discriminant analysis has been deployed to

1

Here \document" need not correspond to any particular organization. It might be a chapter within a

book, a section within a chapter, or an individual paragraph. In the following we will assume that the set

of documents forming a corpus is an exhaustive and disjoint partition of that corpus.

1



classify documents based on a training set which matches features, including word overlap

and word positioning, with relevance to previous queries [13].

Another suite of techniques attempt to enrich the basic feature set by annotating words

with their lexical and syntactic function. For example, fast lookup algorithms from com-

putational linguistics reduce words to their stems [18]. Hidden Markov Modeling has been

successfully employed to induce part-of-speech tags, given a lexicon, with greater than

95% accuracy [20]. An extension of this technique, known as the inside-outside algorithm,

promises to provide a method for inducing a stochastic grammar given su�cient training

text [1, 14]. Less ambitious procedures aim at robustly extracting noun phrases given a se-

quence of part-of-speech tags [5]. Word co-occurrence relations have been exploited to order

alternatives in cases of lexical ambiguity [15, 11]. Non-parametric classi�cation procedures

have been used to detect sentence boundaries in the face of typographic ambiguity [23].

A typical scenario confronts a user with an information need, or interest, with a corpus

of natural language text documents. The task is to satisfy that need, usually by delivering

one or more relevant documents, or, alternatively, by indicating persuasively that no such

documents exist in the corpus. This is accomplished by extracting from each document a

feature set, and providing the user with a tool which allows search over these features in

some prescribed fashion. For example, a standard boolean search technique assumes the

feature set is one or more words extracted from the text of the document, and the query

language is boolean expressions involving those words [17]. Since it is anticipated that the

corpus may be very large, construction of a feature index by preprocessing each document

is a standard search accelerator [26].

Conventional search techniques are cast within a framework that might be referred to

as the library-automation paradigm. It is presumed that the cost for evaluating a query

is su�ciently high that a single iteration must return as high quality, and as complete, a

response as possible. This is in keeping with online systems that charge for connect time,

and is re
ected in evaluation criteria that discount the cost of query formulation and search

resolution while measuring the precision and recall levels for the ranked set of documents

which is implicitly presumed to be the search result [26]. Ironically, the best improvements to

date, with respect to these criteria, come from a incremental query reformulation technique,

known as relevance feedback [27].

We have argued that the availability of high-interaction user interfaces on modern work-

stations should modify this model, and have proposed an alternative paradigm, which we

refer to as information theater [8]. In essence, the user is brought back into the loop by

making interaction between the user and partial search results an explicit component of

query resolution. The user is employed as an active �ltering and query reformulation agent,

which is only plausible if one provides rapid response to user intervention. We have devel-

oped a search method, Snippet Search, a form of guided boolean search with proximity, and

an associated browsing tool, which exempli�es these principles.

Snippet Search's basic underlying assumption is that short queries, consisting of a few

search terms, are by their very nature radically incomplete. Hence, query repair and elabora-

tion through user interaction and iteration are essential to achieve an adequate combination

2



of recall and precision. This calls for a high-interaction interface rapidly delivering results to

the user in a way that can be quickly appreciated, and for a search method whose operation

is intuitive and which o�ers information as to which next step is likely to be most e�ective

in achieving a desired result.

Related Work

Boolean keyword search is a well-known search technique in information retrieval [26]. Es-

sentially, a set of terms, typically individual words, or word stems, is extracted from the

unrestricted text of each document in a corpus. Search then proceeds by forming, as a

query, a boolean expression in terms of these keywords which is resolved by �nding the set

of documents that satisfy that expression. For example, a typical query might consist of

the conjunction of two search terms. Documents that contain both terms in any order and

any position would then be returned. Disjunction and, less frequently, negation are also

likely to be supported.

Unconstrained boolean search represents a document as a set of keywords; sequence

information is ignored. Proximity search paradigms modify this representation by placing

non-boolean nearness constraints on otherwise standard boolean queries [26]. A proximity

operator is introduced that demands that two given search terms occur within some given

distance (expressed as a number of characters or a number of words) in order for the

basic conjunction to be satis�ed. For example, the a two-word query may be narrowed by

requesting that the two search terms appear within one word of each other, either in any

order or in the given order.

Proximity search enables the user to form phrase-like queries; that is, a local combination

of terms is treated as a search unit. This assumes considerable importance when one recalls

that a query is a representation of an \information need". Often the concepts inherent in

this information need are not expressible as single words; instead phrases and even complete

sentences must be employed to adequately specify the thought. Boolean queries allow for

the partial expression of these sorts of combinations, but they also clearly allow for too many

unwanted matches. Higher precision is achievable by making use of nearness constraints.

However, complete speci�cation of term order may be detrimental since it is a property of

most natural languages (including English), that phrasal units may be rewritten in multiple

ways without a change in meaning. For example \dog's ankle" and \ankle of a dog" express

the same concept. Hence, the application of proximity constraints must be strong enough

to �lter out disconnected occurrences, yet 
exible enough to account for trivial language

variations.

Traditional applications of boolean or proximity search within the library-automation

paradigm result in a candidate set of documents which satisfy the search criterion | the

\hits". The user must then judge the e�ectiveness of the query by perusing these documents,

a potentially time consuming operation, especially if document titles are insu�cient to

distinguish relevant from non-relevant hits. In fact, there is empirical evidence that boolean

searches tend to fall into two classes, those whose result sets contain only a very few hits

(narrow query), and those that result in a great many hits (broad query) [2, 22]. In the case

3



of only a few hits, the user is left with the uncomfortable feeling that something may have

been missed, which leads to a desire to broaden the existing query. However, if the query

is over-broadened, the user is presented with far too many hits, and the task of separating

out the relevant documents from the mass becomes daunting.

The problem with boolean search is that the user is provided with little or no assistance in

query reformulation. A dictionary of available search terms can aid the search for alternative

terminology, as can an online domain-speci�c thesaurus [16], but, often, the help of a

highly trained intermediary, such as a research librarian, is required to reach a desirable

reformulation.

One solution is to provide enough information about each hit that the user can rapidly

determine the contextual usage, and hence arrive at a relevance judgement and, possibly,

a reformulation, without necessarily scanning the entire text. Paper-based keyword-in-

context indices (and other styles of permuted indices) o�er a solution for the case of single

term queries. The user enters the index with a single term, the \gutter word", and �nds

single lines of text for each occurrence, with the gutter word aligned in a column and lines

ordered alphabetically by the text appearing after the gutter word, with wraparound [21].

The choice of alphabetic sort key for the lines of context can be less than optimal if one

is searching for related phrases containing the search key, since the words determining the

phrase will often not follow the key word directly. An alternative sort key, that captures

much of this intuition, has been employed successfully in the generation of an index to

titles in Statistics and Probability [24, 25]. Computerized versions of these sorts of indices

exists in a variety of di�erent forms [6, 32], yet few, if any, elaborate on the basic query and

display strategy.

Snippet Search

Snippet Search addresses these issues by allowing the user to directly inspect the space of

phrases generated by a set of terms of interest. The intention is to aid query reformula-

tion by exposing the user to the range of variation present in the corpus. For example, a

snippet search keyed by the single term \information" might display phrases such as \infor-

mation storage and retrieval", \advances in information retrieval", \sensory information",

and \genetic information" among others, each of which occurs in the corpus.

From the user's perspective, Snippet Search resembles a phrase search where the query

speci�es constituents and results are returned which contain these and new constituents,

organized in a fashion that emphasizes the new rather than the old. Query formulation

consists of specifying one or more \constituents" in a way that requires little or no query

syntax. These constituents are then matched against the corpus using a heuristic which

interprets them as a boolean conjunction with a proximity constraint. Then, instead of

returning matching documents and treating the search as if it were complete, as would a

standard boolean search, Snippet Search returns returns a short textual context surrounding

the matches. These snippets are intended to contain su�cient context to distinguish usage,

but not so much text as to distract the reader or clutter the display.

4



Figure 1: The Text Browser

5



Figure 2: Snippet Query Speci�cation

The current heuristic returns the text surrounding the search terms plus one other \sig-

ni�cant" word, where signi�cance is operationally de�ned by not being on some prespeci�ed

list of non-topic-in
uencing words (a stop list). The neighboring non-stop word provides

distinguishing context and is highlighted in the display to draw the user's attention to what

is new, rather than what was input (the query terms). If this context is insu�cient to dis-

tinguish usage, the user is encouraged to ask for more (a snippet operation called \extend").

If the context shows a word combination which is a priori uninteresting, all snippets with

similar word structure can be deleted (an operation called \forget"). Note that the \forget"

operation is, in e�ect, boolean negation by example.

Since the times required for each of these operations can be made small, the overall e�ect

is to encourage incremental query reformulation based on occurrences as they appear in

the corpus of interest. In the case where the short context is su�cient to indicate that the

snippet is indeed relevant, the user may proceed directly to the corresponding document

(an operation called \view").

An Example

We have implemented a version of Snippet Search which realizes the strategy just outlined.

In particular, Snippet Search is one of the search modes supported by the Text Database

architecture (TDB) [10], a software artifact implemented in Common Lisp [29] which is

directed towards fast prototyping of retrieval systems. A user interface to TDB, known as

the Text Browser, uses the Interlisp-D [7] window system to present a multi-paradigm text

search and retrieval tool (see �gure 1). Currently, two search modes are supported over the

same corpus, Similarity Search and Snippet Search. The �rst two panels concern themselves

with snippet query speci�cation and the presentation of results. The third panel is for the

scrollable display of documents. The last two panels are concerned with Similarity Search.

The ordering is not particularly signi�cant, although it is anticipated that Snippet Search

will be most useful for fairly directed queries, the results of which can then seed a browsing

method, such as Similarity Search.

Prior to search, the target corpus (in this example, Grolier's encyclopedia, 64 Megabytes

of ASCII text) was processed by an indexing engine that extracted the content words

6



Figure 3: Results of \movie" Query

Figure 4: Query Reformulation

Figure 5: Results of \movie industry" Query

7



(ignoring words on a stop list) in each document (in this example, one of the twenty-seven

thousand articles in the encyclopedia), normalized them through the removal of in
ectional

morphology, and recorded their sequential o�sets in an inverted index [9].

Search then proceeds by specifying a set of words which will form the components of a

phrase match criterion (see �gure 2). In this example the user is interested in phrases that

include the word \movie" (or its in
ectional variations). Note that the interface reports the

marginal frequency of the search term, and the number of hits currently found. The query

is resolved by interpreting it as a boolean conjunction with a proximity constraint; a match

occurs if the all query terms occur with no more than one content word gap between them.

In the example, since there is only one query term, all instances of \movie" match.

The result of a query is a set of text snippets, each satisfying the phrase match criterion

snippet (see �gure 3). In the example each instance of \movie" generates up to two overlap-

ping snippets (for a total of 263). These are presented in a stylized fashion to aid perusal by

the user. The display heuristic presents the query terms plus one additional non-stop word

and all the intervening (unindexed) text, containing spaces, punctuation and stop words.

The additional non-stop word is intended to provide distinguishing context. The inclusion

of the intervening unindexed text provides useful syntactic information, especially through

function words.

To focus the user's attention on new information, snippets are formatted so that the

additional non-stop word, is placed adjacent to an easily recognizable location. This has

the e�ect of columnating these contexts next to a vertical strip of white space, known

as the \gutter". The gutter word is highlighted with a bold font, and the query terms

are distinguished, but not as heavily emphasized, with an italic font. The �nal display is

reminiscent of a keyword-in-context index, with the crucial di�erence that each gutter word

is new information (not just part of the match criterion), and, each line may be the result

of a multi-term query.

As with boolean search, no particular ordering of snippets is implied by the query resolu-

tion mechanism. In practice, it is often convenient to organize snippets to correspond to a

particular scan order through an inverted index, since partial results may then be returned

before the completion of the entire query. This is especially useful for queries with a large

number of hits, since the user may begin perusal of the partial results without waiting for

search termination. Other presentation orderings may also be useful. In particular, snip-

pets may also be sorted by the gutter word, or by schemes that extract a sort key from the

sequence of content words. This could be accomplished either incrementally or after search

termination.

In this example, the user can easily see by inspection that \movie" occurs in phrases such

as \silent movie", \movie theater", \movie industry", as well as many others. To view more

snippets without scrolling, the user at this stage may choose to eliminate phrases similar

(in the sense of having the same gutter word) to the one currently selected by buttoning

\forget" in the query panel. Alternatively, the user may narrow the query by picking one of

the completions for further study. If the user re-evaluates the query adding \industry" as an

additional term (see �gure 4), twelve hits are returned (see �gure 5). Again, by inspection it

8



Figure 6: Extending a Snippet

is easy to see, for example, that the article titled \Rome" has a reference to the Italian movie

industry. The snippet \movie industry operated" is not especially revealing; however, the

user may button \extend" to enlarge the viewed context \movie industry operated under

a self-imposed code" (see �gure 6). Any one of the snippets may be selected, and the

associated document viewed (with the snippet highlighted) by buttoning \view" in the

query panel.

Algorithms

It is presumed that each document, d, in a larger corpus is a sequence of words,

d = fw

d

1

; w

d

2

; : : : ; w

d

n

d

g;

where n

d

is the number of word instances (tokens) in document d.

2

It will be convenient

in the following to consider each word occurrence as an word interval of length 1. That is,

let

(d; s; e) = fw

d

s

; w

d

s+1

; : : : ; w

d

e

g;

then

d = f(d; 1; 1); (d; 2; 2); : : : ; (d; n

d

; n

d

)g:

In the case of intervals of length one, let (d; s) = (d; s; s):

An inverted map can be produced by preprocessing each document. This map identi�es

each word (type) with the sequence of length one intervals that contain it as a token,

I(w) = f(d

w

1

; s

w

1;1

); (d

w

1

; s

w

1;2

); : : : ; (d

w

1

; s

w

1;n

w

1

);

(d

w

2

; s

w

2;1

); (d

w

2

; s

w

2;2

); : : : ; (d

w

2

; s

w

2;n

w

2

); : : : ;

(d

w

n

w

; s

w

n

w

;1

); (d

w

n

w

; s

w

n

w

;2

); : : : ; (d

w

n

w

; s

w

n

w

;n

w

d

n

w

)g;

where d

w

i

is the i

th

document containing an instance of w, s

w

i;j

is the word o�set of the j

th

instance of w in d

w

i

, n

w

d

counts the number of instance of w in d, and n

w

is the number of

2

Here, and in the following, word instances are non-stop words.

9



documents in which w occurs. If there exists an ordering on documents, �, (we can always

construct such an ordering), then we will require that I(w) is ordered as follows:

d

w

i

� d

w

j

if i < j

and

s

w

i;j

< s

w

i;k

i� j < k:

In this setting, it is natural to de�ne disjunction as a merge operation on sequences of

word intervals. That is, the result of a disjunctive query q = fw

q

1

; w

q

2

; : : : ; w

q

n

q

g is de�ned

to be:

q

G

i=1

I(w

q

i

);

where

F

denotes an n-ary merge operation on ordered sequences, as can be implemented

by a priority queue in time proportional to logn

q

P

q

i=1

jI(w

q

i

)j, where n

q

= jqj [19].

Similarly, conjunction with proximity can be seen as a specialized merge operation. Sup-

pose q is satis�ed by a sequence of words if every word w

q

i

occurs at least once in the

sequence, and the total length of the sequence is no more than jqj + p, where p � 0 is

the proximity parameter. Let I

i

= I(w

q

i

), and de�ne f

i

j

to be the j

th

interval in I

i

. Set

c

i

= 1 for all i, and let f

i

= f

i

c

i

, initially the �rst interval in I

i

. Let the I

i

's be ordered by

considering the f

i

's;

I

i

� I

j

i� f

i

� f

j

;

Let (d

i

; s

i

) refer to f

i

. Consider the following algorithm:

0 Result = ;

1 Sort the I

i

's

2 if d

1

= d

n

q

and

n

q

�1

X

i=1

s

i+1

� s

i

= s

n

q

� s

1

� p+ n

q

� 1

then append (d

1

; s

1

; s

n

q

) to Result

3 set c

1

= c

1

+ 1

4 if c

1

> jI(w

q

1

)j return Result else goto 1

10



As de�ned here, not every interval that satis�es the query condition is necessarily re-

turned; in cases where two candidate intervals share left edges, only the shorter will be

selected. For example, suppose the query pattern is \xy" and p = 1, then the sequence

\xyy" will generate only one result interval, although two could be found. It is possible,

with the addition of backtracking, to modify this algorithm to be fully correct, but for the

purposes of clarity, we will not pursue the issue further in this paper.

In the worst case, the inner loop of this algorithm is executed

P

n

q

i=1

jI(w

q

i

)j times, while

the cost of step [1] is proportional to n

q

logn

q

, hence the overall time complexity of this

algorithm is proportional to n

q

logn

q

P

n

q

i=1

jI(w

q

i

)j.

Summary and Further Steps

Information access to natural language text needs the active participation of a user, both

because fully automated techniques would require deeper understanding of natural language

text than can be automated today, and because users often need to sharpen their ideas

as they proceed. While access based on words typically requires multiple words to be

su�ciently expressive, boolean conjunction with a built-in proximity constraint can provide

e�ective access via a single phrase (not a single word!) while keeping the query language

so simple as to be nearly unnoticeable.

Presentation of short text stretches, appropriately organized, rather than paragraphs (or

even whole documents), makes it much easier for the user to comb through the returns of

the present query, either as a source of documents to be viewed in detail, or as a source of

suggestions as to how an improved query might be formulated. Repeated cycles of scanning

and query adjustment can be rapid and e�ective.

Snippet Search could be extended in a variety of ways. First, the current heuristic for

choosing the nearby content word could probably be improved by statistically evaluating

the likely topic-determining value of a list of nearby candidate words. This could be ac-

complished either by considering importance weights (as de�ned by similarity search), or

by computing a dispersion measure based on a clustering of the corpus [4].

If a stochastic part-of-speech tagger were available it could be employed in at least two

ways. Since part-of-speech tagging can be sense distinguishing (for example, \package" as

a noun has quite a di�erence sense than \package" as a verb), the strategy would be to

segregate (or sort) snippets based on the inferred part of speech of the query terms. Another

use would feed an tagged-extended context to a noun-phrase recognizer in order to select a

syntactically coherent subset for display purposes.

Snippet Search is most useful by generating candidate phrases given a single term query.

In this case, it may not be necessary to generate an exhaustive listing. Instead, similar

phrases could be represented as a single paradigm. This reduction to equivalence classes

would expose the variation persent in the corpus more readily than the listing of repeated

instance of the same (or similar) phrases.

Multi-term queries can be over-constraining; some form of automatic broadening may

be appropriate if only a few hits are found. This could be accomplished by selectively

11



weakening the match criterion until, at the extreme, it becomes a disjunction, rather than

a conjunction. Such a strategy would di�erentially weight snippets based on the degree of

match | and sort them accordingly.

The validity of any one of these extensions should be based on some evaluation criterion.

However, evaluation procedures developed for the library-automation paradigm are not

directly applicable to Snippet Search. In particular, standard measures of precision and

recall presume a �xed query and a well-de�ned highly-structured result, typically an ordered

list of documents sorted by some measure of relevance. Snippet Search is not intended to

produce such a list, nor be driven by a single query. The overarching concepts of precision

and recall still need to be considered, but in a broader arena, with possibly new de�nitions.

Additional questions arise as well, such as the total time required to discover a particular

fact and the extent of query modi�cation encountered in pursuit of an information need.

One approach would adopt the view that automatic evaluation is impractical. Instead,

an experiment that involves monitoring volunteer users given a �xed set of retrieval tasks

could e�ectively shed light on the e�ciency of Snippet Search in various settings.

12



References

[1] J.K. Baker. Trainable grammars for speech recognition. In D.H. Klatt and J.J. Wolf,

editors, Speech Communications Papers for the 97th Meeting of the Acoustical Society

of America, pages 547{550, 1979.

[2] D. C. Blair and M. E. Maron. An evaluation of retrieval e�ectiveness for a full-text

document-retrieval system. CACM, 28(3):289{299, March 1985.

[3] A. Bookstein and D.R. Swanson. Probabilistic models for automatic indexing. Journal

of the American Society for Information Science, 26(1):45{50, January{February 1975.

[4] John B. Carroll, Peter Davies, and Barry Richman. The American Heritage Word

Frequency Book. Houghton Mi�in, New York, 1971.

[5] K. Church. A stochastic parts program and noun phrase parser for unrestricted text. In

Proceedings of the International Conference on Acoustics, Speech and Signal Processing,

1989.

[6] ATT Corporation. Global regular expression program. Licensed software, 1979.

[7] Xerox Corporation. Interlisp-D Reference Manual. Xerox AIS, 1987.

[8] D. R. Cutting, P.-K. Halvorsen, J. O. Pedersen, and M. Withgott. Information theater

versus information re�nery. In AAAI Spring Symposium on Text-based Intelligent Sys-

tems, Stanford University, Stanford, CA, March 1990. Also available as Xerox PARC

technical report SSL-89-101.

[9] D. R. Cutting and J. O. Pedersen. Optimizations for dynamic inverted index mainte-

nance. In Proceedings of SIGIR'90, September 1990. Also available as Xerox PARC

technical report SSL-90-10.

[10] D.R. Cutting, J. Pedersen, and P.-K. Halvorsen. An object-oriented architecture for

text retrieval. In Conference Proceedings of RIAO'91, Intelligent Text and Image Han-

dling, Barcelona, Spain, pages 285{298, April 1991. Also available as Xerox PARC

technical report SSL-90-83.

[11] Ido Dagan and Alon Itai. A statistical �lter for resolving pronoun references. In Pro-

ceeedings of the 7th Israeli Symposium on Arti�cial Intelligence and Computer Vision,

1990. To Appear.

[12] S. Dumais, G. Furnas, T. Landauer, S. Deerwester, and R. Harshman. Using latent

semantic indexing to improve access to textual information. In Proceeedings of CHI'88,

pages 281{285, 1988.

[13] Norbert Fuhr and Chris Buckley. Probabilistic indexing from relevance feedback. In

Jean-Luc Vidick, editor, Proceedings of SIGIR'90, pages 45{61. ACM SIGIR, Press

Universitaires de Bruxelles, September 1990.

13



[14] T. Fujisaki, F. Jelinek, J. Cocke, E. Black, and T. Nishino. A probabilistic method

for sentence disambiguation. In Proceedings of the International Workshop on Parsing

Technologies, August 1989.

[15] Donald Hindle. Noun classi�cation from predicate-argument structures. In Proceeding

of the 28th meeting of the ACL, Pittsburg, Pennsylvania, pages 268{275, 1990.

[16] H.P.Frei, M.B�artschi, and J.-F. Jauslin. Caliban: Its user-interface and retrieval algo-

rithm. Technical Report 62, Institut f�ur Informatik, ETH, Z�urich, April 1985.

[17] IBM Germany, Stuttgart. Storage and Information Retrieval System (STAIRS), April

1972.

[18] L. Karttunen, K. Koskenniemi, and R. Kaplan. A compiler for two-level phonological

rules. Report CSLI-87-108, Center for the Study of Language and Information, 1987.

[19] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.

Addison-Wesley, 1973.

[20] J. M. Kupiec. Augmenting a hidden Markov model for phrase-dependent word tagging.

In Proceedings of the DARPA Speech and Natural Language Workshop, pages 92{98,

Cape Cod, MA, 1989. Morgan Kaufmann.

[21] H.P. Luhn. Keyword-in-context for technical literature. ASDD Report RC-127, IBM

Corporation, Yorktown Heights, N.Y., August 1959.

[22] Gary Marchionini. Information-seeking strategies of novices using a full-text electronic

encyclopedia. Journal of the American Society for Inforamtion Science, 40(1):54{66,

1989.

[23] Michael Riley. Some applications of tree-based modelling to speech and language.

In Proceedings of the DARPA Speech and Natural Language Workshop, Cape Cod,

Massachusetts, pages 339{352, October 1989.

[24] I.C. Ross and J.W. Tukey. Index to Statisitics and Probability: Permuted Titles, A{

Microbiology, volume Vol. 3 of Information Access Series. R&D Press, Los Altos, CA.,

1975. Also available form the American Mathmatical Society, Providence, R.I.

[25] I.C. Ross and J.W. Tukey. Index to Statisitics and Probability: Permuted Titles,

Microbiology{Z, volume Vol. 4 of Information Access Series. R&D Press, Los Altos,

CA., 1975. Also available form the American Mathmatical Society, Providence, R.I.

[26] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[27] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback.

Journal of the American Society for Information Science, 41(4):288{297, June 1990.

14



[28] G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613{620, November 1975.

[29] G. L. Steele, Jr. Common Lisp, The Language. Digital Press, second edition, 1990.

[30] C.J. van Rijsbergen. A theoretical basis for the use of cooccurrence data in retrieval.

Journal of Documentation, 33(2):106{119, June 1977.

[31] P. Willett. Recent trends in hierarchical document clustering: A critical review. In-

formation Processing & Management, 24(5):577{597, 1988.

[32] Mark Zimmerman. Texas. Public Domain software, 1989.

15


